:: News p1
     News Archive
:: Conferences p2
:: Jobs p2
:: Grants & Awards p2
:: Business News p3
:: Books & Journals p4
:: Establishments p5

adaptiveoptics.org provides news and information for the world-wide adaptive optics community.
Contact: webmaster@adaptiveoptics.org.

Boston Micromachines Deformable Mirror Used in Subaru Extreme AO Project

Cambridge, Massachusetts – June 24, 2009:   Boston Micromachines Corporation, a leading provider of MEMS-based deformable mirror (DM) products for adaptive optics systems, announced today that its
  Kilo‑DM is being used in the Subaru Coronagraphic Extreme-AO project (SCExAO) in a direct imaging technique in the search for extrasolar planets. This system, which is aimed at imaging faint planets around stars, is currently under assembly and slated for on sky use in 2010.

The SCExAO system combines Boston Micromachines’ Kilo-DM, a 1020-actuator MEMS deformable mirror for high accuracy wavefront correction and a high performance Phase Induced Amplitude Apodization (PIAA) coronagraph. SCExAO’s goal is to view planets much fainter and closer to their stars than possible with current techniques. The foremost limit in current adaptive optics systems is the difficulty in determining the difference between a planet image and "speckles" which are actually starlight scattered across the image because of small residual wavefront error.
Modeling MEMS and NEMS, Pelesko
“The Kilo-DM enables us to actively test if light is starlight speckles or a real planet, using the fundamental property that starlight interferes with speckles, but planet light will not,” said Olivier Guyon, astronomer at the Subaru Observatory and the University of Arizona. “With its high number of actuators, the Kilo-DM gives us the ability to rapidly modulate the wavefront in a way which tests, for each point in the image, if the light we are seeing is starlight or planet light. Laboratory tests have validated this new technique. We can measure speckles almost a billion times fainter than the central source. "The discovery of extrasolar planets is an exciting field and we are happy that the excellent team at the Subaru Observatory has selected our mirrors for use in their system,” said Paul Bierden, president and CEO of Boston Micromachines. “I believe that our deformable mirrors can be an enabling technology to help meet the challenging requirements of astronomical research.”

Work is also underway with the University of Arizona to use the same technique on the Large Binocular Telescope and discussions are in process for high performance exoplanet imagers on future Extremely Large Telescopes. The Kilo-DM is an enabling component for high spatial resolution wavefront control. It offers 1020 actuators in a 32×32 array, with clear aperture of 9.3 mm with 1.5 microns of deflection making it ideal for challenging applications. The systems include a deformable mirror, high speed controller, mirror interface, and high-density electrical interconnects.

Previous News:  
Boston Micromachines Unveils Major Enhancement to Kilo-DM, Apr 2008.

Full Press Release


© 2009
              ^ [TOP]
<<   [1]  [2]  [3]  [4]  [5]  >>
'Surely You're Joking, Mr. Feynman!', Feynman